KB817 Series

GENERAL PURPOSE HIGH ISOLATION VOLTAGE SINGLE TRANSISTOR TYPE PHOTOCOUPLER SERIES

FEATURES

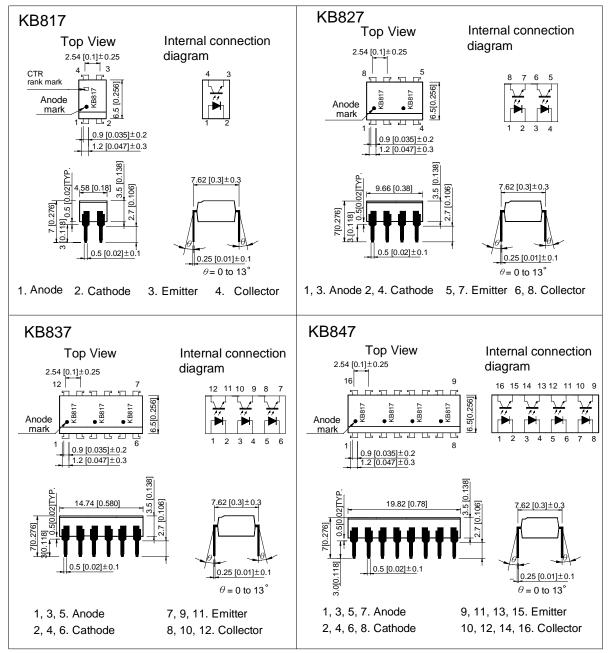
- 1. High isolation voltage between input and output (Viso=5000 Vr.m.s)
- 2.Compact dual-in-line package
- KB817:1-channel type
- KB827:2-channel type
- KB837:3-channel type
- KB847:4-channel type
- 3.Recognized by UL and CUL, file NO. E225308

DESCRIPTION

- 1. The KB817 series are optically coupled isolators containing a GaAs light emitting diode and an NPN silicon phototransistor.
- 2.The lead pitch is 2.54mm

APPLICATIONS

- 1.Computer terminals
- 2.Registers, copiers, automatic vending machines
- 3.System appliances, measuring instruments
- 4. Programmable logic controller
- 5.Signal transmission between circuits of different potentials and impedances



KB817 Series

* PACKAGE DIMENSIONS (UNIT: mm)

DIP Type

TOLERANCE : \pm 0.25[\pm 0.01] UNLESS OTHERWISE NOTED.

KB817 Series

*ORDERINGINFORMATION

Part Number	Package	Packing Style
KB817	4-pin DIP	100pcs/each tube
KB827	8-pin DIP	50pcs/each tube
KB837	12-pin DIP	30pcs/each tube
KB847	16-pin DIP	25pcs/each tube

*Absolute Maximum Ratings (T_a=25°C)

	Parameter	Symbol	Rating	Unit
	Forward current	١F	50	mA
Input	Reverse voltage	V r	6	V
	Power dissipation	Р	70	mW
	Collector-emitter voltage	Vceo	35	V
Output	Emitter-collector voltage	V _{ECO}	6	V
	Collector current	Ιc	50	mA
	Collector power dissipation	Pc	150	mW
Total power dissipation		Ptot	200	mW
*1 Isolation voltage		Viso	5000	V _{r.m.s}
Operating temperature		Topr	-30~+100	°C
Storage temperature		Tstg	-55~+125	°C
*2 Soldering temperature		Tsol	260	°C

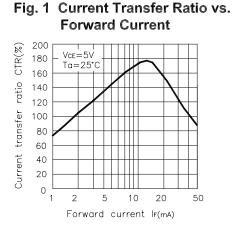
*1 40 to 60%RH, AC for 1 minute

*2 For 10 seconds

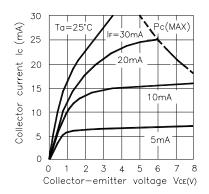
KB817 Series

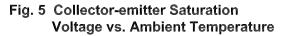
*Electro-optical Characteristics

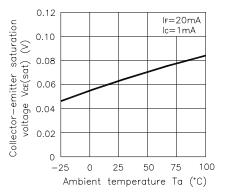
Parameter		Symbol	Conditions	Min.	Тур.	Max.	Unit	
Forward voltage		VF	I⊧=20mA	_	1.2	1.4	V	
Input Peak forward voltage		Vfm	Іғм=0.5А	_	_	3.0	V	
	Reverse current		I _R	V _R =4V	_	_	10	μΑ
Output	Collector dark current		I _{CEO}	V _{CE} =20V	_	_	10 ⁻⁷	Α
^{*1} Current transfer ratio		CTR	IF=5mA, VCE=5V	50	_	600	%	
Transfer charact- eristics	Collector-emitter saturation voltage		V _{CE} (sat)	IF=20mA, Ic=1mA	_	0.1	0.2	V
	Response time	Rise time	t _r	Vcε=2V, Ic=2mA Rι=100Ω	_	4	18	μS
		Fall time	t _f		_	3	18	μS


*1 Classification table of current transfer ratio is shown below.

$$CTR = \frac{Ic}{I_F} \times 100\%$$


Model NO.	Rank mark	CTR (%)
KB817L	L	50 to 100
KB817A	A	80 to 160
KB817B	В	130 to 260
KB817C	C	200 to 400
KB817D	D	300 to 600
KB8x7AB	A or B	80 to 260
KB8x7BC	B or C	130 to 400
KB8x7CD	C or D	200 to 600
KB8x7AC	A,B or C	80 to 400
KB8x7BD	B,C or D	130 to 600
KB8x7AD	A,B,C or D	80 to 600
KB8x7	A,B,C,D or No mark	50 to 600


x: 1 or 2 or 3 or 4


KB817 Series

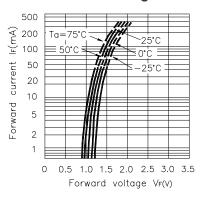

Fig. 3 Collector Current vs. Collector-emitter Voltage

Fig. 2 Forward Current vs. Forward voltage

Fig. 4 Relative Current Transfer Ratio vs. Ambient Temperature

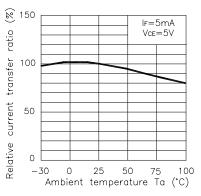
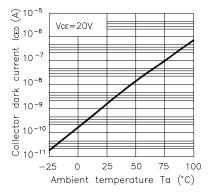
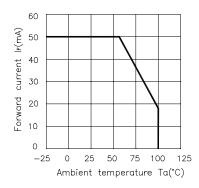
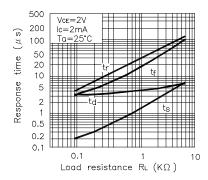




Fig. 6 Collector Dark Current vs. Ambient Temperature

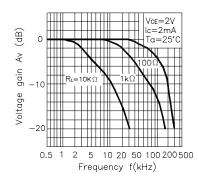
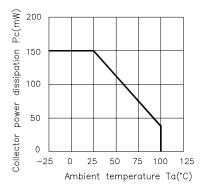
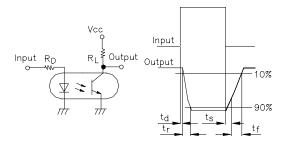


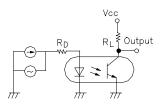
KB817 Series

Fig. 7 Forward Current vs. Ambient Temperature

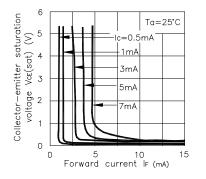
Fig. 9 Response Time vs. Load Resistance

Fig. 10 Frequency Response


Fig. 8 Collector Power Dissipation vs. Ambient Temperature

Test Circuit for Response Time


Test Circuit for Frequency Response

KB817 Series

Fig. 11 Collector-emitter Saturation Voltage vs. Forward Current

* NOTES ON HANDLING

1.Recommended soldering conditions (Dip soldering)

(1) Dip soldering

Temperature	260°C or below (molten solder temperature)
Time	Less than 10 seconds.
Cycle	One cycle allowed to be dipped in solder including plastic mold portion.
Flux	Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)

(2) Cautions

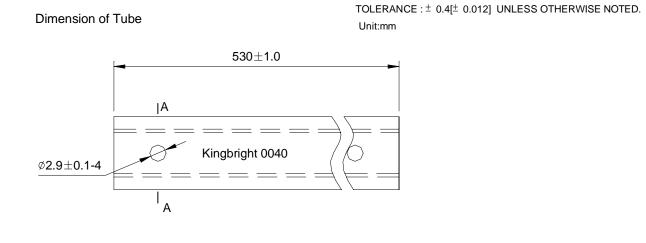
Fluxes

Avoid removing the residual flux with freon-based and chlorine-basedcleaning solvent.

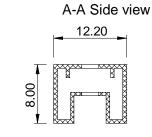
2.Cautions regarding noise

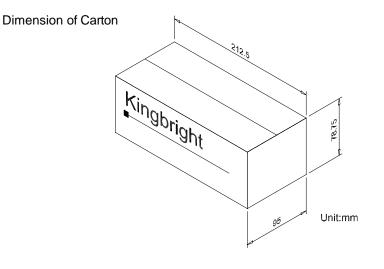
Be aware that power is suddenly into the componment any surge currentmay cause damage happen, even if the voltage is within the absolute maximum ratings.

KB817 Series


CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. GaAs dust and fumes are toxic. Do not break,cut or pulverize the product,or use chemicals to dissolve them.


RESTRICTIONS ON PRODUCT USE


- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices / types available in every country.
- We are mention about our product quality stablity, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing KINGBRIGHT products, to observe standards of safety, and to a avoid situations in which a malfunction or failure of a KINGBRIGHT product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that KINGBRIGHT products are used within specified operating ranges as set forth in the most recent products specifications.

KB817 Series

530±1.0

