
CHAP T E R 9

Advanced PIC18 Projects—CAN
Bus Projects

The Controller Area Network (CAN) is a serial bus communications protocol developed

by Bosch (an electrical equipment manufacturer in Germany) in the early 1980s.

Thereafter, CAN was standardized as ISO-11898 and ISO-11519, establishing itself as

the standard protocol for in-vehicle networking in the auto industry. In the early days of

the automotive industry, localized stand-alone controllers had been used to manage

various actuators and electromechanical subsystems. By networking the electronics in

vehicles with CAN, however, they could be controlled from a central point, the engine

control unit (ECU), thus increasing functionality, adding modularity, and making

diagnostic processes more efficient.

Early CAN development was mainly supported by the vehicle industry, as it was used in

passenger cars, boats, trucks, and other types of vehicles. Today the CAN protocol is

used in many other fields in applications that call for networked embedded control,

including industrial automation, medical applications, building automation, weaving

machines, and production machinery. CAN offers an efficient communication protocol

between sensors, actuators, controllers, and other nodes in real-time applications, and is

known for its simplicity, reliability, and high performance.

The CAN protocol is based on a bus topology, and only two wires are needed for

communication over a CAN bus. The bus has a multimaster structure where each device

on the bus can send or receive data. Only one device can send data at any time while

all the others listen. If two or more devices attempt to send data at the same time,

the one with the highest priority is allowed to send its data while the others return to

receive mode.

www.newnespress.com

As shown in Figure 9.1, in a typical vehicle application there is usually more than one

CAN bus, and they operate at different speeds. Slower devices, such as door control,

climate control, and driver information modules, can be connected to a slow speed bus.

Devices that require faster response, such as the ABS antilock braking system, the

transmission control module, and the electronic throttle module, are connected to a

faster CAN bus.

The automotive industry’s use of CAN has caused mass production of CAN controllers.

Current estimate is that 400 million CAN modules are sold every year, and CAN

controllers are integrated on many microcontrollers, including PIC microcontrollers,

and are available at low cost.

Figure 9.2 shows a CAN bus with three nodes. The CAN protocol is based on CSMA/

CDþAMP (Carrier-Sense Multiple Access/Collision Detection with Arbitration on

Message Priority) protocol, which is similar to the protocol used in Ethernet LAN.

When Ethernet detects a collision, the sending nodes simply stop transmitting and wait

Air
conditioner

Door
switch

Instrument
panel

500Kb/s

Satellite
navigation

DVD Radio

5Mb/s

Engine

Oil
pressure Brakes

Gateway

125Kb/s

CD

Head
lamps

Steering Engine
temperature

Tire
pressure

Figure 9.1: Typical CAN bus application in a vehicle

www.newnespress.com

476 Chapter 9

a random amount of time before trying to send again. CAN protocol, however, solves

the collision problem using the principle of arbitration, where only the higheest priority

node is given the right to send its data.

There are basically two types of CAN protocols: 2.0A and 2.0B. CAN 2.0A is the

earlier standard with 11 bits of identifier, while CAN 2.0B is the new extended standard

with 29 bits of identifier. 2.0B controllers are completely backward-compatible with

2.0A controllers and can receive and transmit messages in either format.

There are two types of 2.0A controllers. The first is capable of sending and receiving

2.0A messages only, and reception of a 2.0B message will flag an error. The second

type of 2.0A controller (known as 2.0B passive) sends and receives 2.0A messages but

will also acknowledge receipt of 2.0B messages and then ignore them.

Some of the CAN protocol features are:

� CAN bus is multimaster. When the bus is free, any device attached to the bus

can start sending a message.

� CAN bus protocol is flexible. The devices connected to the bus have no

addresses, which means messages are not transmitted from one node to another

based on addresses. Instead, all nodes in the system receive every message

transmitted on the bus, and it is up to each node to decide whether the received

message should be kept or discarded. A single message can be destined for a

particular node or for many nodes, depending on how the system is designed.

Another advantage of having no addresses is that when a device is added to or

CAN BUS

NODE
2

NODE
3

NODE
1

Terminator Terminator

Figure 9.2: Example CAN bus

www.newnespress.com

477Advanced PIC18 Projects—CAN Bus Projects

removed from the bus, no configuration data needs to be changed (i.e., the bus is

“hot pluggable”).

� CAN bus offers remote transmit request (RTR), which means that one node on

the bus is able to request information from the other nodes. Thus instead of

waiting for a node to continuously send information, a request for information

can be sent to the node. For example, in a vehicle, where the engine temperature

is an important parameter, the system can be designed so the temperature is

sent periodically over the bus. However, a more elegant solution is to request

the temperature as needed, since it minimizes the bus traffic while maintaining

the network’s integrity.

� CAN bus communication speed is not fixed. Any communication speed can be

set for the devices attached to a bus.

� All devices on the bus can detect an error. The device that has detected an error

immediately notifies all other devices.

� Multiple devices can be connected to the bus at the same time, and there are no

logical limits to the number of devices that can be connected. In practice, the

number of units that can be attached to a bus is limited by the bus’s delay time

and electrical load.

The data on CAN bus is differential and can be in two states: dominant and recessive.

Figure 9.3 shows the state of voltages on the bus. The bus defines a logic bit 0 as a

dominant bit and a logic bit 1 as a recessive bit. When there is arbitration on the bus, a

Voltage
level

Vdiff
RecessiveRecessive

CANL

CANH

Dominant
3.5

2.5

1.5

Time

Figure 9.3: CAN logic states

www.newnespress.com

478 Chapter 9

dominant bit state always wins out over a recessive bit state. In the recessive state, the

differential voltage CANH and CANL is less than the minimum threshold (i.e., less than

0.5V receiver input and less than 1.5V transmitter output). In the dominant state, the

differential voltage CANH and CANL is greater than the minimum threshold.

The ISO-11898 CAN bus specifies that a device on that bus must be able to drive a

forty-meter cable at 1Mb/s. A much longer bus length can usually be achieved by

lowering the bus speed. Figure 9.4 shows the variation of bus length with the

communication speed. For example, with a bus length of one thousand meters we can

have a maximum speed of 40Kb/s.

A CAN bus is terminated to minimize signal reflections on the bus. The ISO-11898

requires that the bus has a characteristic impedance of 120 ohms. The bus can be

terminated by one of the following methods:

� Standard termination

� Split termination

� Biased split termination

In standard termination, the most common termination method, a 120-ohm resistor is

used at each end of the bus, as shown in Figure 9.5(a). In split termination, the ends

of the bus are split and a single 60-ohm resistor is used as shown in Figure 9.5(b).

Split termination allows for reduced emission, and this method is gaining popularity.

Biased split termination is similar to split termination except that a voltage divider

40
40

400

100 1000

760

1120

Speed (bps)

B
us

 le
ng

th
 (

m
)

Figure 9.4: CAN bus speed and bus length

www.newnespress.com

479Advanced PIC18 Projects—CAN Bus Projects

circuit and a capacitor are used at either end of the bus. This method increases the EMC

performance of the bus (Figure 9.5(c)).

Many network protocols are described using the seven-layer Open Systems

Interconnection (OSI) model. The CAN protocol includes the data link layer, and

the physical layer of the OSI reference model (see Figure 9.6). The data link layer

(DLL) consists of the Logical Link Control (LLC) and Medium Access Control

(MAC). LLC manages the overload notification, acceptance filtering, and recovery

management. MAC manages the data encapsulation, frame coding, error detection,

and serialization/deserialization of the data. The physical layer consists of the

physical signaling layer (PSL), physical medium attachment (PMA), and the

medium dependent interface (MDI). PSL manages the bit encoding/decoding and

bit timing. PMA manages the driver/receiver characteristics, and MDI is the

connections and wires.

120 ohm

Standard termination
(a)

60 ohm

60 ohm

Split termination
(b)

VDD

60 ohm

Biased split termination

R2

R1

60 ohm

(c)

Figure 9.5: Bus termination methods

www.newnespress.com

480 Chapter 9

There are basically four message frames in CAN: data, remote, error, and overload. The

data and remote frames need to be set by the user. The other two are set by the CAN

hardware.

9.1 Data Frame

The data frame is in two formats: standard (having an 11-bit ID) and extended (having a

29-bit ID). The data frame is used by the transmitting device to send data to the

receiving device, and the data frame is the most important frame handled by the user.

Figure 9.7 shows the data frame’s structure. A standard data frame starts with the

start of frame (SOF) bit, which is followed by an 11-bit identifier and the remote

transmission request (RTR) bit. The identifier and the RTR form the 12-bit arbitration

field. The control field is 6 bits wide and indicates how many bytes of data are in

the data field. The data field can be 0 to 8 bytes. The data field is followed by the

Application
Presentation
Session
Transport
Netwok
Data Link
Physical

Medium Access Control

Medium Dependent Interface

Physical Medium Attachment

Physical Signaling

Logical Link Control

Figure 9.6: CAN and the OSI model

RTR
Control

11-bit
identifier

Start of
frame Data

CRC

ACK

End of
frame

Figure 9.7: Standard data frame

www.newnespress.com

481Advanced PIC18 Projects—CAN Bus Projects

CRC field, which checks whether or not the received bit sequence is corrupted.

The ACK field is 2 bits and is used by the transmitter to receive acknowledgment of

a valid frame from any receiver. The end of the message is indicated by a 7-bit end

of frame (EOF) field. In an extended data frame, the arbitration field is 32 bits wide

(29-bit identifier þ1-bit IDE to define the message as an extended data frame þ1-bit

SRR which is unused þ1-bit RTR) (see Figure 9.8).

The data frame consists of the following fields:

9.1.1 Start of Frame (SOF)

The start of frame field indicates the beginning of a data frame and is common to

both standard and extended formats.

9.1.2 Arbitration Field

Arbitration is used to resolve bus conflicts that occur when several devices at

once start sending messages on the bus. The arbitration field indicates the priority

of a frame, and it is different in the standard and extended formats. In the standard

format there are 11 bits, and up to 2032 IDs can be set. The extended format

ID consists of 11 base IDs plus 18 extended IDs. Up to 2032 � 218 discrete IDs

can be set.

During the arbitration phase, each transmitting device transmits its identifier and

compares it with the level on the bus. If the levels are equal, the device continues

to transmit. If the device detects a dominant level on the bus while it is trying to

transmit a recessive level, it quits transmitting and becomes a receiving device.

After arbitration only one transmitter is left on the bus, and this transmitter continues

to send its control field, data field, and other data.

11-bit
identifier

SRR 18-bit
identifier

IDE RTR

CRC

Control

ACK

End of
frame

Start of
frame

Figure 9.8: Extended data frame

www.newnespress.com

482 Chapter 9

The process of arbitration is illustrated in Figure 9.9 by an example consisting of three

nodes having identifiers:

Node 1: 11100110011 Node 2: 11100111111 Node 3: 11100110001

Assuming the recessive level corresponds to 1 and the dominant level to 0, the

arbitration is performed as follows:

� All the nodes start transmitting simultaneously, first sending SOF bits.

� Then they send their identifier bits. The 8th bit of Node 2 is in the recessive

state, while the corresponding bits of Nodes 1 and 3 are in the dominant state.

Therefore Node 2 stops transmitting and returns to receive mode. The receiving

phase is indicated by a gray field.

� The 10th bit of Node 1 is in the recessive state, while the same bit of Node 3 is

in dominant state. Thus Node 1 stops transmitting and returns to receive mode.

� The bus is now left to Node 3, which can send its control and data fields freely.

Notably, the devices on the bus have no addresses. Instead, all the devices pick up all

the data on the bus, and every node must filter out the messages it does not want.

Bus

Node 3

Node 2

Node 1

Start of frame

1 2 3 4 5 6 7 8 9 10 11

Figure 9.9: Example CAN bus arbitration

www.newnespress.com

483Advanced PIC18 Projects—CAN Bus Projects

9.1.3 Control Field

The control field is 6 bits wide, consisting of 2 reserved bits and 4 data length code

(DLC) bits, and indicates the number of data bytes in the message being transmitted.

This field is coded as shown in Table 9.1, where up to 8 transmit bytes can be coded

with 6 bits.

9.1.4 Data Field

The data field carries the actual content of the message. The data size can vary from

0 to 8 bytes. The data is transmitted with the MSB first.

9.1.5 CRC Field

The CRC field, consisting of a 15-bit CRC sequence and a 1-bit CRC delimiter, is

used to check the frame for a transmission error. The CRC calculation includes the

start of frame, arbitration field, control field, and data field. The calculated CRC

and the received CRC sequence are compared, and if they do not match, an error

is assumed.

Table 9.1: Coding the control field

No. of data bytes DLC3 DLC2 DLC1 DLC0

0 D D D D

1 D D D R

2 D D R D

3 D D R R

4 D R D D

5 D R D R

6 D R R D

7 D R R R

8 R D or R D or R D or R

D: Dominant level, R: Recessive level.

www.newnespress.com

484 Chapter 9

9.1.6 ACK Field

The ACK field indicates that the frame has been received normally. This field

consists of 2 bits, one for ACK slot and one for ACK delimiter.

9.2 Remote Frame

The remote frame is used by the receiving unit to request transmission of a

message from the transmitting unit. It consists of six fields (see Figure 9.10): start

of frame, arbitration field, control field, CRC field, ACK field, and end of

frame field. A remote frame is the same as a data frame except that it lacks a

data field.

9.3 Error Frame

Error frames are generated and transmitted by the CAN hardware and are used to

indicate when an error has occurred during transmission. An error frame consists of

an error flag and an error delimiter. There are two types of error flags: active, which

consists of 6 dominant bits, and passive, which consists of 6 recessive bits. The

error delimiter consists of 8 recessive bits.

9.4 Overload Frame

The overload frame is used by the receiving unit to indicate that it is not yet

ready to receive frames. This frame consists of an overload flag and an overload

delimiter. The overload flag consists of 6 dominant bits and has the same

structure as the active error flag of the error frame. The overload delimiter

consists of 8 recessive bits and has the same structure as the error delimiter of

the error frame.

SOF
Arbitration

field

Control field
ACK

CRC
EOF

Figure 9.10: Remote frame

www.newnespress.com

485Advanced PIC18 Projects—CAN Bus Projects

9.5 Bit Stuffing

The CAN bus makes use of bit stuffing, a technique to periodically synchronize

transmit-receive operations to prevent timing errors between receive nodes. After 5

consecutive bits with the same level, one bit of inverted data is added to the sequence.

If, during sending of a data frame or remote frame, the same level occurs in 5

consecutive bits anywhere from the start of frame to the CRC sequence, an inverted

bit is inserted in the next (i.e., the sixth) bit. If, during receiving of a data frame or

remote frame, the same level occurs in 5 consecutive bits anywhere from the start of

frame to CRC sequence, the next (sixth) bit is deleted from the received frame. If the

deleted sixth bit is at the same level as the fifth bit, an error (stuffing error) is detected.

9.6 Types of Errors

The CAN bus identifies five types of errors:

� Bit error

� CRC error

� Form error

� ACK error

� Stuffing error

Bit errors are detected when the output level and the data level on the bus do not

match. Both transmit and receive units can detect bit errors. CRC errors are detected

only by receiving units. CRC errors are detected if the calculated CRC from the

received message and the received CRC do not match. Form errors are detected

by the transmitting or receiving units when an illegal frame format is detected.

ACK errors are detected only by the transmitting units if the ACK field is found

recessive. Stuffing errors are detected when the same level of data is detected for 6

consecutive bits in any field that should have been bit-stuffed. This error can be

detected by both the transmitting and receiving units.

9.7 Nominal Bit Timing

The CAN bus nominal bit rate is defined as the number of bits transmitted every

second without resynchronization. The inverse of the nominal bit rate is the nominal

bit time. All devices on the CAN bus must use the same bit rate, even though each

www.newnespress.com

486 Chapter 9

device can have its own different clock frequency. One message bit consists of four

nonoverlapping time segments:

� Synchronization segment (Sync_Seg)

� Propagation time segment (Prop_Seg)

� Phase buffer segment 1 (Phase_Seg1)

� Phase buffer segment 2 (Phase_Seg2)

The Sync_Seg segment is used to synchronize various nodes on the bus, and an edge

is expected to lie within this segment. The Prop_Seg segment compensates for

physical delay times within the network. The Phase_Seg1 and Phase_Seg2 segments

compensate for edge phase errors. These segments can be lengthened or shortened by

synchronization. The sample point is the point in time where the actual bit value is

located and occurs at the end of Phase_Seg1. A CAN controller can be configured

to sample three times and use a majority function to determine the actual bit value.

Each segment is divided into units known as time quantum, or TQ. A desired bit

timing can be set by adjusting the number of TQ’s that comprise one message bit

and the number of TQ’s that comprise each segment in it. The TQ is a fixed unit

derived from the oscillator period, and the time quantum of each segment can vary

from 1 to 8. The lengths of the various time segments are:

� Sync_Seg is 1 time quantum long

� Prop_Seg is programmable as 1 to 8 time quanta long

� Phase_Seg1 is programmable as 1 to 8 time quanta long

� Phase_Seg2 is programmable as 2 to 8 time quanta long

By setting the bit timing, a sampling point can be set so multiple units on the bus can

sample messages with the same timing.

The nominal bit time is programmable from a minimum of 8 time quanta to a maximum

of 25 time quanta. By definition, the minimum nominal bit time is 1ms, corresponding
to a maximum 1Mb/s rate. The nominal bit time (TBIT) is given by:

TBIT ¼ TQ � ðSync Seg þ Prop Seg þ Phase Seg1 þ Phase Seg2Þ ð9:1Þ

www.newnespress.com

487Advanced PIC18 Projects—CAN Bus Projects

and the nominal bit rate (NMR) is

NBR ¼ 1=TBIT ð9:2Þ

The time quantum is derived from the oscillator frequency and the programmable

baud rate prescaler, with integer values from 1 to 64. The time quantum can be

expressed as:

TQ ¼ 2 � ðBRP þ 1Þ=FOSC ð9:3Þ

where TQ is in ms, FOSC is in MHz, and BRP is the baud rate prescaler (0 to 63).

Equation (9.2) can be written as

TQ ¼ 2 � ðBRP þ 1Þ � TOSC ð9:4Þ

where TOSC is in ms.

An example of the calculation of a nominal bit rate follows.

Example 9.1

Assuming a clock frequency of 20MHz, a baud rate prescaler value of 1, and a

nominal bit time of TBIT ¼ 8 * TQ, determine the nominal bit rate.

Solution 9.1

Using equation (9.3),

TQ ¼ 2 � ð1 þ 1Þ=20 ¼ 0:2ms

also

TBIT ¼ 8 � TQ ¼ 8 � 0:2 ¼ 1:6ms

From Equation (9.2),

NBR ¼ 1=TBIT ¼ 1=1:6ms ¼ 625; 000bites=s or 625Kb=s

www.newnespress.com

488 Chapter 9

In order to compensate for phase shifts between the oscillator frequencies of nodes

on a bus, each CAN controller must synchronize to the relevant signal edge of the

received signal. Two types of synchronization are defined: hard synchronization and

resynchronization. Hard synchronization is used only at the beginning of a message

frame, when each CAN node aligns the Sync_Seg of its current bit time to the

recessive or dominant edge of the transmitted start of frame. According to the

rules of synchronization, if a hard synchronization occurs, there will not be a

resynchronization within that bit time.

With resynchronization, Phase_Seg1 may be lengthened or Phase_Seg2 may be

shortened. The amount of change in the phase buffer segments has an upper bound

given by the synchronization jump width (SJW). The SJW is programmable between

1 and 4, and its value is added to Phase_Seg1 or subtracted from Phase_Seg2.

9.8 PIC Microcontroller CAN Interface

In general, any type of PIC microcontroller can be used in CAN bus–based projects, but

some PIC microcontrollers (e.g., PIC18F258) have built-in CAN modules, which can

simplify the design of CAN bus–based systems. Microcontrollers with no built-in CAN

modules can also be used in CAN bus applications, but additional hardware and

software are required, making the design costly and also more complex.

Figure 9.11 shows the block diagram of a PIC microcontroller–based CAN bus

application, using a PIC16 or PIC12-type microcontroller (e.g., PIC16F84) with no

CAN Node

CAN Bus

CAN
Transceiver
MCP2551 TX

RX PIC12/16
Series 8-bit

microcontroller

CAN
Controller
MCP2515

SPI

Figure 9.11: CAN node with any PIC microcontroller

www.newnespress.com

489Advanced PIC18 Projects—CAN Bus Projects

built-in CAN module. The microcontroller is connected to the CAN bus using an

external MCP2515 CAN controller chip and an MCP2551 CAN bus transceiver chip.

This configuration is suitable for a quick upgrade to an existing design using any PIC

microcontroller.

For new CAN bus–based designs it is easier to use a PIC microcontroller with a built-in

CAN module. As shown in Figure 9.12, such devices include built-in CAN controller

hardware on the chip. All that is required to make a CAN node is to add a CAN

transceiver chip. Table 9.2 lists some of the PIC microcontrollers that include a CAN

module.

CAN Node

TX

CAN Bus

RXCAN
Transceiver
MCP2551

PIC18F
Series 8-bit

Microcontroller
&

CAN controller
module

Figure 9.12: CAN node with integrated CAN module

Table 9.2: Some popular PIC microcontrollers that include CAN modules

Device Pins
Flash
(KB)

SRAM
(KB)

EEPROM
(bytes) A/D

CAN
module SPI UART

18F258 28 16 768 256 5 1 1 1

18F2580 28 32 1536 256 8 1 1 1

18F2680 28 64 3328 1024 8 1 1 1

18F4480 40/44 16 768 256 11 1 1 1

18F8585 80 48 3328 1024 16 1 1 1

18F8680 80 64 3328 1024 16 1 1 1

www.newnespress.com

490 Chapter 9

9.9 PIC18F258 Microcontroller

Later in this chapter the PIC18F258 microcontroller is used in a CAN bus–based

project. This section describes this microcontroller and its operating principles with

respect to its built-in CAN bus. The principles here are in general applicable to other

PIC microcontrollers with CAN modules.

The PIC18F258 is a high performance 8-bit microcontroller with integrated CAN

module. The device has the following features:

� 32K flash program memory

� 1536 bytes RAM data memory

� 256 bytes EEPROM memory

� 22 I/O ports

� 5-channel 10-bit A/D converters

� Three timers/counters

� Three external interrupt pins

� High-current (25mA) sink/source

� Capture/compare/PWM module

� SPI/I2C module

� CAN 2.0A/B module

� Power-on reset and power-on timer

� Watchdog timer

� Priority level interrupts

� DC to 40MHz clock input

� 8 � 8 hardware multiplier

� Wide operating voltage (2.0V to 5.5V)

� Power-saving sleep mode

www.newnespress.com

491Advanced PIC18 Projects—CAN Bus Projects

The features of the PIC18F258 microcontroller’s CAN module are as follows:

� Compatible with CAN 1.2, CAN 2.0A, and CAN 2.0B

� Supports standard and extended data frames

� Programmable bit rate up to 1Mbit/s

� Double-buffered receiver

� Three transmit buffers

� Two receive buffers

� Programmable clock source

� Six acceptance filters

� Two acceptance filter masks

� Loop-back mode for self-testing

� Low-power sleep mode

� Interrupt capabilities

The CAN module uses port pins RB3/CANRX and RB2/CANTX for CAN bus receive

and transmit functions respectively. These pins are connected to the CAN bus via an

MCP2551-type CAN bus transceiver chip.

The PIC18F258 microcontroller supports the following frame types:

� Standard data frame

� Extended data frame

� Remote frame

� Error frame

� Overload frame

� Interframe space

A node uses filters to decide whether or not to accept a received message. Message

filtering is applied to the whole identifier field, and mask registers are used to specify

which bits in the identifier the filters should examine.

www.newnespress.com

492 Chapter 9

The CAN module in the PIC18F258 microcontroller has six modes of operation:

� Configuration mode

� Disable mode

� Normal operation mode

� Listen-only mode

� Loop-back mode

� Error recognition mode

9.9.1 Configuration Mode

The CAN module is initialized in configuration mode. The module is not allowed to

enter configuration mode while a transmission is taking place. In configuration mode

the module will neither transmit nor receive, the error counters are cleared, and the

interrupt flags remain unchanged.

9.9.2 Disable Mode

In disable mode, the module will neither transmit nor receive. In this mode the internal

clock is stopped unless the module is active. If the module is active, it will wait for

11 recessive bits on the CAN bus, detect that condition as an IDLE bus, and then accept

the module disable command. The WAKIF interrupt (wake-up interrupt) is the only

CAN module interrupt that is active in disable mode.

9.9.3 Normal Operation Mode

The normal operation mode is the CAN module’s standard operating mode. In this

mode, the module monitors all bus messages and generates acknowledge bits, error

frames, etc. This is the only mode that can transmit messages.

9.9.4 Listen-only Mode

The listen-only mode allows the CAN module to receive messages, including

messages with errors. It can be used to monitor bus activities or to detect the baud

rate on the bus. For automatic baud rate detection, at least two other nodes must be

www.newnespress.com

493Advanced PIC18 Projects—CAN Bus Projects

communicating with each other. The baud rate can be determined by testing

different values until valid messages are received. The listen-only mode cannot

transmit messages.

9.9.5 Loop-Back Mode

In the loop-back mode, messages can be directed from internal transmit buffers to

receive buffers without actually transmitting messages on the CAN bus. This mode

is useful during system developing and testing.

9.9.6 Error Recognition Mode

The error recognition mode is used to ignore all errors and receive all messages. In

this mode, all messages, valid or invalid are received and copied to the receive buffer.

9.9.7 CAN Message Transmission

The PIC18F258 microcontroller implements three dedicated transmit buffers: TXB0,

TXB1, and TXB2. Pending transmittable messages are in a priority queue. Before

the SOF is sent, the priorities of all buffers queued for transmission are compared.

The transmit buffer with the highest priority is sent first. If two buffers have the

same priority, the one with the higher buffer number is sent first. There are four

levels of priority.

9.9.8 CAN Message Reception

Reception of a message is a more complex process. The PIC18F258 microcontroller

includes two receive buffers, RXB0 and RXB1, with multiple acceptance filters

for each (see Figure 9.13). All received messages are assembled in the message

assembly buffer (MAB). Once a message is received, regardless of the type of

identifier and the number of data bytes, the entire message is copied into the MAB.

Received messages have priorities. RXB0 is the higher priority buffer, and it has two

message acceptance filters, RXF0 and RXF1. RXB1 is the lower priority buffer and

has four acceptance filters: RXF2, RXF3, RXF4, and RXF5. Two programmable

acceptance filter masks, RXM0 and RXM1, are also available, one for each receive

buffer.

www.newnespress.com

494 Chapter 9

The CAN module uses message acceptance filters and masks to determine if a

message in the MAB should be loaded into a receive buffer. Once a valid message is

received by the MAB, the identifier field of the message is compared to the filter

values. If there is a match, that message is loaded into the appropriate receive buffer.

The filter masks determine which bits in the identifier are examined with the filters.

The truth table in Table 9.3 shows how each bit in the identifier is compared against

Message Assembly Buffer

Identifier
Data and
Identifier

Data and
Identifier Identifier

RXB0 RXB1

Acceptance Filter
RXF1

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Filter
RXF0

Acceptance Filter
RXF3

Acceptance Filter
RXM2

Acceptance Mask
RXM0

Acceptance Mask
RXM1

Accept

Accept

Figure 9.13: Receive buffer block diagram

Table 9.3: Filter/mask truth table

Mask bit n Filter bit n Message identifier bit n001 Accept or reject bit n

0 � � Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

www.newnespress.com

495Advanced PIC18 Projects—CAN Bus Projects

the masks and filters to determine if the message should be accepted. If a mask

bit is set to 0, that bit in the identifier is automatically accepted regardless of the

filter bit.

9.9.9 Calculating the Timing Parameters

Setting the nodes’ timing parameters is essential for the bus to operate reliably. Given

the microcontroller clock frequency and the required CAN bus bit rate, we can calculate

the values of the following timing parameters:

� Baud rate prescaler value

� Prop_Seg value

� Phase_Seg1 value

� Phase_Seg2 value

� SJW value

Correct timing requires that

� Prop_Seg þ Phase_Seg1 � Phase_Seg2

� Phase_Seg2 � SJW

The following example illustrates the calculation of these timing parameters.

Example 9.2

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN bit

rate is 125KHz, calculate the timing parameters.

Solution 9.2

With a 20MHz clock rate, the clock period is 50ns. Choosing a baud rate prescaler

value of 4, from Equation (9.4), TQ ¼ 2 * (BRP þ 1) * TOSC, gives a time

quantum of TQ ¼ 500ns. To obtain a nominal bit rate of 125KHz, the nominal bit

time must be:

TBIT ¼ 1=0:125MHz ¼ 8ms; or 16TQ

www.newnespress.com

496 Chapter 9

The Sync_Segment is 1TQ. Choosing 2TQ for the Prop_Seg, and 7TQ for Phase_Seg1

leaves 6TQ for Phase_Seg2 and places the sampling point at 10TQ at the end of

Phase_Seg1.

By the rules described earlier, the SJW can be the maximum allowed (i.e., 4). However,

a large SJW is only necessary when the clock generation of different nodes is not

stable or accurate (e.g., if ceramic resonators are used). Typically, a SJW of 1 is

enough. In summary, the required timing parameters are:

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 2
Phase_Seg1 ¼ 7
Phase_Seg2 ¼ 6
SJW ¼ 1

The sampling point is at 10TQ which corresponds to 62.5% of the total bit time.

There are several tools available for free on the Internet for calculating CAN bus timing

parameters. One such tool is the CAN Baud Rate Calculator, developed by Artic

Consultants Ltd (http://www.articconsultants.co.uk). An example using this tool

follows.

Example 9.3

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN

bit rate is 125KHz, calculate the timing parameters using the CAN Baud Rate

Calculator.

Solution 9.3

Figure 9.14 shows the output of the CAN Baud Rate Calculator program. The device

type is selected as PIC18Fxxx8, the oscillator frequency is entered as 20MHz, and the

CAN bus baud rate is entered as 125KHz.

Clicking the Calculate Settings button calculates and displays the recommended timing

parameters. In general, there is more than one solution, and different solutions are given

in the Calculated Solutions field’s drop-down menu.

In choosing Solution 2 from the drop-down menu, the following timing parameters are

recommended by the program:

www.newnespress.com

497Advanced PIC18 Projects—CAN Bus Projects

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 5
Phase_Seg1 ¼ 5
Phase_Seg2 ¼ 5
SJW ¼ 1
Sample point ¼ 68%
Error ¼ 0%

9.10 mikroC CAN Functions

The mikroC language provides two libraries for CAN bus applications: the library for

PIC microcontrollers with built-in CAN modules and the library based on using a SPI

Figure 9.14: Output of the CAN Baud Rate Calculator program

www.newnespress.com

498 Chapter 9

bus for PIC microcontrollers having no built-in CAN modules. In this section we

will discuss only the library functions available for PIC microcontrollers with built-in

CAN modules. Similar functions are available for the PIC microcontrollers with no

built-in CAN modules.

The mikroC CAN functions are supported only by PIC18XXX8 microcontrollers

with MCP2551 or similar CAN transceivers. Both standard (11 identifier bits) and

extended format (29 identifier bits) messages are supported.

The following mikroC functions are provided:

� CANSetOperationMode

� CANGetOperationMode

� CANInitialize

� CANSetBaudRAte

� CANSetMask

� CANSetFilter

� CANRead

� CANWrite

9.10.1 CANSetOperationMode

The CANSetOperationMode function sets the CAN operation mode. The function

prototype is:

void CANSetOperationMode(char mode, char wait_flag)

The parameter wait_ flag is either 0 or 0 � FF. If it is set to 0 � FF, the function blocks

and will not return until the requested mode is set. If it is set to 0, the function returns as

a nonblocking call.

The mode can be one of the following:

� CAN_MODE_NORMAL Normal mode of operation

� CAN_MODE_SLEEP Sleep mode of operation

� CAN_MODE_LOOP Loop-back mode of operation

www.newnespress.com

499Advanced PIC18 Projects—CAN Bus Projects

� CAN_MODE_LISTEN Listen-only mode of operation

� CAN_MODE_CONFIG Configuration mode of operation

9.10.2 CANGetOperationMode

The CANGetOperationMode function returns the current CAN operation mode. The

function prototype is:

char CANGetOperationMode(void)

9.10.3 CANInitialize

The CANInitialize function initializes the CAN module. All mask registers are cleared

to 0 to allow all messages. Upon execution of this function, the normal mode is set. The

function prototype is:

void CANInitialize(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPEG, char CAN_CONFIG_FLAGS)

where

SJW is the synchronization jump width

BRP is the baud rate prescaler

PHSEG1 is the Phase_Seg1 timing parameter

PHSEG2 is the Phase_Seg2 timing parameter

PROPSEG is the Prop_Seg

CAN_CONFIG_FLAGS can be one of the following configuration flags:

� CAN_CONFIG_DEFAULT Default flags

� CAN_CONFIG_PHSEG2_PRG_ON Use supplied PHSEG2 value

� CAN_CONFIG_PHSEG2_PRG_OFF Use maximum of PHSEG1 or

information processing time (IPT),

whichever is greater

� CAN_CONFIG_LINE_FILTER_ON Use CAN bus line filter for wake-up

� CAN_CONFIG_FILTER_OFF Do not use CAN bus line filter

www.newnespress.com

500 Chapter 9

� CAN_CONFIG_SAMPLE_ONCE Sample bus once at sample point

� CAN_CONFIG_SAMPLE_THRICE Sample bus three times prior to

sample point

� CAN_CONFIG_STD_MSG Accept only standard identifier

messages

� CAN_CONFIG_XTD_MSG Accept only extended identifier

messages

� CAN_CONFIG_DBL_BUFFER_ON Use double buffering to receive

data

� CAN_CONFIG_DBL_BUFFER_OFF Do not use double buffering

� CAN_CONFIG_ALL_MSG Accept all messages including

invalid ones

� CAN_CONFIG_VALID_XTD_MSG Accept only valid extended

identifier messages

� CAN_CONFIG_VALID_STD_MSG Accept only valid standard

identifier messages

� CAN_CONFIG_ALL_VALID_MSG Accept all valid messages

These configuration values can be bitwise AND’ed to form complex configuration

values.

9.10.4 CANSetBaudRate

The CANSetBaudRate function is used to set the CAN bus baud rate. The function

prototype is:

void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS)

The arguments of the function are as in function CANInitialize.

9.10.5 CANSetMask

The CANSetMask function sets the mask for filtering messages. The function

prototype is:

www.newnespress.com

501Advanced PIC18 Projects—CAN Bus Projects

void CANSetMask(char CAN_MASK, long value, char
CAN_CONFIGFLAGS)

CAN_MASK can be one of the following:

� CAN_MASK_B1 Receive buffer 1 mask value

� CAN_MASK_B2 Receive buffer 2 mask value

value is the mask register value. CAN_CONFIG_FLAGS can be either

CAN_CONFIG_XTD (extended message), or CAN_CONFIG_STD (standard

message).

9.10.6 CANSetFilter

The CANSetFilter function sets filter values. The function prototype is:

void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS)

CAN_FILTER can be one of the following:

� CAN_FILTER_B1_F1 Filter 1 for buffer 1

� CAN_FILTER_B1_F2 Filter 2 for buffer 1

� CAN_FILTER_B2_F1 Filter 1 for buffer 2

� CAN_FILTER_B2_F2 Filter 2 for buffer 2

� CAN_FILTER_B2_F3 Filter 3 for buffer 2

� CAN_FILTER_B2_F4 Filter 4 for buffer 2

CAN_CONFIG_FLAGS can be either CAN_CONFIG_XTD (extended message) or

CAN_CONFIG_STD (standard message).

9.10.7 CANRead

The CANRead function is used to read messages from the CAN bus. If no message is

available, 0 is returned. The function prototype is:

char CANRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS)

www.newnespress.com

502 Chapter 9

id is the CAN message identifier. Only 11 or 29 bits may be used depending on

message type (standard or extended). data is an array of bytes up to 8 where the

received data is stored. datalen is the length of the received data (1 to 8).

CAN_RX_MSG_FLAGS can be one of the following:

� CAN_RX_FILTER_1 Receive buffer filter 1 accepted this message

� CAN_RX_FILTER_2 Receive buffer filter 2 accepted this message

� CAN_RX_FILTER_3 Receive buffer filter 3 accepted this message

� CAN_RX_FILTER_4 Receive buffer filter 4 accepted this message

� CAN_RX_FILTER_5 Receive buffer filter 5 accepted this message

� CAN_RX_FILTER_6 Receive buffer filter 6 accepted this message

� CAN_RX_OVERFLOW Receive buffer overflow occurred

� CAN_RX_INVALID_MSG Invalid message received

� CAN_RX_XTD_FRAME Extended identifier message received

� CAN_RX_RTR_FRAME RTR frame message received

� CAN_RX_DBL_BUFFERED This message was double buffered

These flags can be bitwise AND’ed if desired.

9.10.8 CANWrite

The CANWrite function is used to send a message to the CAN bus. A zero is returned

if message can not be queued (buffer full). The function prototype is:

char CANWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS)

id is the CAN message identifier. Only 11 or 29 bits may be used depending on message

type (standard or extended). data is an array of bytes up to 8 where the data to be sent is

stored. datalen is the length of the data (1 to 8).

CAN_TX_MSG_FLAGS can be one of the following:

� CAN_TX_PRIORITY_0 Transmit priority 0

� CAN_TX_PRIORITY_1 Transmit priority 1

www.newnespress.com

503Advanced PIC18 Projects—CAN Bus Projects

� CAN_TX_PRIORITY_2 Transmit priority 2

� CAN_TX_PRIORITY_3 Transmit priority 3

� CAN_TX_STD_FRAME Standard identifier message

� CAN_TX_XTD_FRAME Extended identifier message

� CAN_TX_NO_RTR_FRAME Non RTR message

� CAN_TX_RTR_FRAME RTR message

These flags can be bitwise AND’ed if desired.

9.11 CAN Bus Programming

To operate the PIC18F258 microcontroller on the CAN bus, perform the following

steps:

� Configure the CAN bus I/O port directions (RB2 and RB3)

� Initialize the CAN module (CANInitialize)

� Set the CAN module to CONFIG mode (CANSetOperationMode)

� Set the mask registers (CANSetMask)

� Set the filter registers (CANSetFilter)

� Set the CAN module to normal mode (CANSetOperationMode)

� Write/read data (CANWrite/CANRead)

PROJECT 9.1—Temperature Sensor CAN
Bus Project

The following is a simple two-node CAN bus–based project. The block diagram of

the project is shown in Figure 9.15. The system is made up of two CAN nodes.

One node (called DISPLAY node) requests the temperature every second and

displays it on an LCD. This process is repeated continuously. The other node

(called COLLECTOR node) reads the temperature from an external semiconductor

temperature sensor.

www.newnespress.com

504 Chapter 9

The project’s circuit diagram is given in Figure 9.16. Two CAN nodes are

connected together using a two-meter twisted pair cable, terminated with a 120-ohm

resistor at each end.

NODE: COLLECTOR NODE: DISPLAY

PIC18F
258 LCD

120 ohm
terminator

PIC18F
258LM35

MCP2551 MCP2551

CAN Bus

Temperature
sensor

120 ohm
terminator

Figure 9.15: Block diagram of the project

Figure 9.16: Circuit diagram of the project

www.newnespress.com

505Advanced PIC18 Projects—CAN Bus Projects

The DISPLAY Processor

Like the COLLECTOR processor, the DISPLAY processor consists of a PIC18F258

microcontroller with a built-in CAN module and an MCP2551 transceiver chip. The

microcontroller is operated from an 8MHz crystal. The MCLR input is connected to

an external reset button. The CAN outputs (RB2/CANTX and RB3/CANRX) of the

microcontroller are connected to the TXD and RXD inputs of the MCP2551. Pins

CANH and CANL of the transceiver chip are connected to the CAN bus. An

HD44780-type LCD is connected to PORTC of the microcontroller to display the

temperature values.

The COLLECTOR Processor

The COLLECTOR processor consists of a PIC18F258 microcontroller with a

built-in CAN module and an MCP2551 transceiver chip. The microcontroller is

operated from an 8MHz crystal. The MCLR input is connected to an external reset

button. Analog input AN0 of the microcontroller is connected to a LM35DZ-type

semiconductor temperature sensor. The sensor can measure temperature in the range

of 0�C to 100�C and generates an analog voltage directly proportional to the

measured temperature (i.e., the output is 10mV/�C). For example, at 20�C the

output voltage is 200mV.

The CAN outputs (RB2/CANTX and RB3/CANRX) of the microcontroller are

connected to the TXD and RXD inputs of an MCP2551-type CAN transceiver

chip. The CANH and CANL outputs of this chip are connected directly to a twisted

cable terminating at the CAN bus. The MCP2551 is an 8-pin chip that supports

data rates up to 1Mb/s. The chip can drive up to 112 nodes. An external resistor

connected to pin 8 of the chip controls the rise and fall times of CANH and

CANL so that EMI can be reduced. For high-speed operation this pin should be

connected to ground. A reference voltage equal to VDD/2 is output from pin 5 of

the chip.

The program listing is in two parts: the DISPLAY program and the COLLECTOR

program. The operation of the system is as follows:

� The DISPLAY processor requests the current temperature from the

COLLECTOR processor over the CAN bus

www.newnespress.com

506 Chapter 9

� The COLLECTOR processor reads the temperature, formats it, and sends to the

DISPLAY processor over the CAN bus

� The DISPLAY processor reads the temperature from the CAN bus and then

displays it on the LCD

� This process is repeated every second

DISPLAY Program

Figure 9.17 shows the program listing of the DISPLAY program, called DISPLAY.C.

At the beginning of the program PORTC pins are configured as outputs, RB3 is

configured as input (CANRX), and RB2 is configured as output (CANTX). In this

project the CAN bus bit rate is selected as 100Kb/s. With a microcontroller clock

frequency of 8MHz, the Baud Rate Calculator program (see Figure 9.14) is used to

calculate the timing parameters as:

SJW ¼ 1
BRP ¼ 1
Phase_Seg1 ¼ 6
Phase_Seg2 ¼ 7
Prop_Seg ¼ 6

The mikroC CAN bus function CANInitialize is used to initialize the CAN module. The

timing parameters and the initialization flag are specified as arguments in this function.

The initialization flag is made up from the bitwise AND of:

init_flag ¼ CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

Where sampling the bus three times is specified, the standard identifier is specified,

double buffering is turned on, and the line filter is turned off.

Then the operationmode is set to CONFIG and the filter masks and filter values are specified.

Both mask 1 and mask 2 are set to all 1’s (�1 is a shorthand way of writing hexadecimal

FFFFFFFF, i.e., setting all mask bits to 1’s) so that all filter bits match up with incoming data.

www.newnespress.com

507Advanced PIC18 Projects—CAN Bus Projects

/∗∗
 CAN BUS EXAMPLE - NODE: DISPLAY
 ===============================

This is the DISPLAY node of the CAN bus example. In this project a PIC18F258
type microcontroller is used. An MCP2551 type CAN bus transceiver is used to
connect the microcontroller to the CAN bus. The microcontroller is operated from
an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of
the transceiver chip are connected to the CAN bus.

An LCD is connected to PORTC of the microcontroller. The ambient
temperature is read from another CAN node and is displayed on the LCD.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

 RC0 D4
 RC1 D5
 RC2 D6
 RC3 D7
 RC4 RS
 RC5 EN

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: DISPLAY.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 long id, mask;

Figure 9.17: DISPLAY program listing

www.newnespress.com

508 Chapter 9

 TRISC = 0; // PORTC are outputs (LCD)
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// CAN BUS Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialize CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B2_F3 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,3,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

Figure 9.17: (Cont’d)

www.newnespress.com

509Advanced PIC18 Projects—CAN Bus Projects

Filter 3 for buffer 2 is set to value 3 so that identifiers having values 3 are accepted by

the receive buffer.

The operation mode is then set to NORMAL. The program then configures the LCD

and displays the message “CAN BUS” for one second on the LCD.

The main program loop executes continuously and starts with a for statement. Inside

this loop the LCD is cleared and text “TEMP ¼” is displayed on the LCD. Then

character “T” is sent over the bus with the identifier equal to 500 (the COLLECTOR

//
// Configure LCD
//
 Lcd_Config(&PORTC,4,5,0,3,2,1,0); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"CAN BUS"); // Display heading on LCD
 Delay_ms(1000); // Wait for 2 seconds

//
// Program loop. Read the temperature from Node:COLLECTOR and display
// on the LCD continuously
//
 for(;;) // Endless loop
 {
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Temp = "); // Display "Temp = "
 //
 // Send a message to Node:COLLECTOR and ask for data
 //
 data[0] = 'T'; // Data to be sent
 id = 500; // Identifier
 CANWrite(id, data, 1, send_flag); // send 'T'
 //
 // Get temperature from node:COLLECT
 //
 dt = 0;
 while(!dt)dt = CANRead(&id, data, &len, &read_flag);
 if(id == 3)
 {
 temperature = data[0];
 ByteToStr(temperature,txt); // Convert to string
 Lcd_Out(1,8,txt); // Output to LCD
 Delay_ms(1000); // Wait 1 second
 }
 }

}

Figure 9.17: (Cont’d)

www.newnespress.com

510 Chapter 9

/∗∗∗
 CAN BUS EXAMPLE - NODE: COLLECTOR
 =================================

This is the COLLECTOR node of the CAN bus example. In this project a
PIC18F258 type microcontroller is used. An MCP2551 type CAN bus transceiver
is used to connect the microcontroller to the CAN bus. The microcontroller is
operated from an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of the
transceiver chip are connected to the CAN bus.

An LM35DZ type analog temperature sensor is connected to port AN0 of the
microcontroller. The microcontroller reads the temperature when a request is
received and then sends the temperature value as a byte to Node:DISPLAY on
the CAN bus.

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: COLLECTOR.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 unsigned int temp;
 unsigned long mV;
 long id, mask;

 TRISA = 0xFF; // PORTA are inputs
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// Configure A/D converter
//
 ADCON1 = 0x80;

Figure 9.18: COLLECTOR program listing
(Continued)

www.newnespress.com

511Advanced PIC18 Projects—CAN Bus Projects

//
// CAN BUS Timing Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 BRP = 1;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialise CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B1_F1 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,500,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

//

Figure 9.18: (Cont’d)

www.newnespress.com

512 Chapter 9

// Program loop. Read the temperature from analog temperature
// sensor
//
 for(;;) // Endless loop
 {
 //
 // Wait until a request is received
 //
 dt = 0;
 while(!dt) dt = CANRead(&id, data, &len, &read_flag);
 if(id == 500 && data[0] == 'T')
 {
 //
 // Now read the temperature
 //
 temp = Adc_Read(0); // Read temp
 mV = (unsigned long)temp ∗ 5000 / 1024; // in mV
 temperature = mV/10; // in degrees C
 //
 // send the temperature to Node:Display
 //
 data[0] = temperature;
 id = 3; // Identifier
 CANWrite(id, data, 1, send_flag); // send temperature
 }
 }
}

Figure 9.18: (Cont’d)

Node: DISPLAY Node: COLLECTOR

Initialize CAN module Initialize CAN module
Set mode to CONFIG Set mode to CONFIG
Set Mask bits to 1’s Set Mask bits to 1’s
Set Filter value to 3 Set Filter value to 500
Set mode to NORMAL Set mode to NORMAL

DO FOREVER DO FOREVER
 Send character “T” with identifier 500 Read a character
 Read temperature with identifier 3 IF character is “T”
 Convert temperature to string Read temperature
 Display temperature on LCD Convert to digital
 Wait 1 second Convert to ºC
ENDDO Send with identifier 3
 ENDIF
 ENDDO

Figure 9.19: Operation of both nodes

www.newnespress.com

513Advanced PIC18 Projects—CAN Bus Projects

node filter is set to accept identifier 500). This is a request to the COLLECTOR

node to send the temperature reading. The program then reads the temperature from

the CAN bus, converts it to a string in array txt, and displays it on the LCD. This

process repeats after a one-second delay.

COLLECTOR Program

Figure 9.18 shows the program listing of the COLLECTOR program, called

COLLECTOR.C. The initial part of this program is the same as the DISPLAY

program. The receive filter is set to 500 so that messages with identifier 500 are

accepted by the program.

Inside the program loop, the program waits until it receives a request to send the

temperature. Here the request is identified by the reception of character “T”. Once a

valid request is received, the temperature is read and converted into �C (stored in

variable temperature) and then sent to the CAN bus as a byte with an identifier value

equal to 3. This process repeats forever.

Figure 9.19 summarizes the operation of both nodes.

www.newnespress.com

514 Chapter 9

	Chapter 9: Advanced PIC18 Projects-CAN Bus Projects
	9.1 Data Frame
	9.1.1 Start of Frame (SOF)
	9.1.2 Arbitration Field
	9.1.3 Control Field
	9.1.4 Data Field
	9.1.5 CRC Field
	9.1.6 ACK Field

	9.2 Remote Frame
	9.3 Error Frame
	9.4 Overload Frame
	9.5 Bit Stuffing
	9.6 Types of Errors
	9.7 Nominal Bit Timing
	9.8 PIC Microcontroller CAN Interface
	9.9 PIC18F258 Microcontroller
	9.9.1 Configuration Mode
	9.9.2 Disable Mode
	9.9.3 Normal Operation Mode
	9.9.4 Listen-only Mode
	9.9.5 Loop-Back Mode
	9.9.6 Error Recognition Mode
	9.9.7 CAN Message Transmission
	9.9.8 CAN Message Reception
	9.9.9 Calculating the Timing Parameters

	9.10 mikroC CAN Functions
	9.10.1 CANSetOperationMode
	9.10.2 CANGetOperationMode
	9.10.3 CANInitialize
	9.10.4 CANSetBaudRate
	9.10.5 CANSetMask
	9.10.6 CANSetFilter
	9.10.7 CANRead
	9.10.8 CANWrite

	9.11 CAN Bus Programming
	PROJECT 9.1-Temperature Sensor CAN Bus Project
	The DISPLAY Processor
	The COLLECTOR Processor
	DISPLAY Program
	COLLECTOR Program

